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Self-Gravitating Three-Dimensional Solitons in 
Nonlinear Scale-Invariant Electrodynamics 
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A scale-invariant nonlinear modification of Maxwellian electrodynamics within 
general relativity is proposed. The starting point is the Mie model and its scale- 
invariant generalization in flat space-time E4. We prove that all static, spherically 
symmetrical regular field configurations in this new theory, as well as those in 
the Mie model, possess negative energy. In search of solitonlike solutions with 
positive masses, we take into account their proper gravitational fields. We show 
first that in Riemannian space any gauge-invariant electrodynamic theory does 
not admit regular solutions. Supposing the gauge invariance to be broken inside 
the particle, we prove the existence of static particlelike solutions with spherical 
symmetry and positive energy in the scale-invariant electrodynamics described 
by a Lagran/~ian density of the form ~ = -Y(I)RI(2K) - W(I)F~a~a/2 + 
2X(I)R~A=A ~, with Y, W, and X arbitrary functions of the invariant I = A,A ~. 
The correspondence with the Maxwellian theory is required. 

1. ~ T R O D U C T I O N  

The first nonlinear model of electrodynamics generalizing the system 
of Maxwell's equations was suggested by Mie (1912), who introduced a 
unified field pict.ure of matter supposing the density of the current to be a 
function of electromagnetic potentials. This conjecture led him to a Lagran- 
gian density of the form 

1 
= - 16-----~ F~F~V + g(A=A~)3 

with g < 0 being an arbitrary constant, the negative sign of which was 
necessary for the existence of regular solutions. 
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To justify the fact that the Mie model contains explicitly the 4-potential 
A~, which in the case of Maxwellian electrodynamics is defined up to a 
gradient transformation, one can notice that the gauge invariance is broken 
only inside the particles, where the invariant I = A r  ~ is large. However, 
the gauge invariance is reinstated in the weak-field limit corresponding to 
the Maxwellian theory. It turns out that regular solutions of the Mie model 
possess negative energy; therefore it needs to be modified in order to cover 
particles of positive mass. 

This paper is arranged as follows. In Section 2 we construct an extension 
of the Mie model on the basis of scale-invariant electrodynamics in flat space- 
time E4. We prove that all static, spherically symmetrical regular solutions in 
this new theory, as well as those in the Mie model, describe field configura- 
tions with negative energy. To meet the requirement of mass positivity we take 
into account the interaction between electromagnetic and gravitational fields. 

In Section 3 we show that any model of gauge-invariant electrodynamics 
in Riemannian space does not possess solitonlike configurations. Then we 
construct the Lagrangian of the scale-invariant electrodynamics with broken 
gauge invariance inside the particle and prove the existence of regular static, 
spherically symmetrical solutions with positive energy. In this connection it 
should be emphasized that by only taking into account the proper gravitational 
field of the particle can one succeed in searching for regular solutions with 
positive mass, this result being impossible in Minkowski space. 

2. EXTENSION OF MIE'S MODEL ON THE BASIS OF SCALE- 
INVARIANT ELECTRODYNAMICS IN FLAT SPACE- 
TIME 

In this paper we consider the simplest type of three-dimensional soli- 
tons--static, spherically symmetrical ones. In this section we first construct 
a scale-invariant electrodynamic theory in flat space-time E4. One can easily 
prove that gauge-invariant electrodynamics does not admit regular solutions 
in Minkowski space due to the divergence form of the field equations (Bronni- 
kov, 1992). Thus, if one assumes the differential equations to be of second 
order, it seems natural to consider the Lagrangian as a function of at least 
two invariants, 

IM = --• I = A~A ~ 

just supposing the gauge invariance to be broken. We also require that at 
large distance from the particle the correspondence principle with linear 
Maxwell electrodynamics holds. Moreover, we suppose that the new model 
preserves scale invariance, which is one of the attractive inherent properties 
of Maxwell's theory. Namely, noticing that in static electrodynamics only 



Nonlinear Scale-lnvariant Electrodynamics 1495 

the time component A0 = q~ survives, let us perform the following transforma- 
tions of the radial variable r and the scalar potential qffr): 

r --~ ar, qffr) ---) bqffr) 

with a and b arbitrary constant parameters. Then the invariance of the action 
under these transformations implies that the Lagrangian density 5s satisfies 
an equation of the form 

5s ~ -= a35s ~~ [M, b 2I (2.1) 

The correspondence with the Maxwellian theory in the limit I --~ 0 permits 
one to deduce from (2.1) the following relation between the parameters a 
and b: 

ab  2 = 1 (2.2) 

In view of (2.1) and (2.2) the Lagrangian density becomes 

5s = IMU (2.3) 

where U is an arbitrary function such that U(0) = l/8"rr. 
One gets from (2.3) the following Euler-Lagrange equation: 

1 d r2q~ ' U - - - U n  - 3~pSUn = 0  (2.4) 
r 2 d r  ~p,2 

where U n denotes the derivative of the function U with respect to its argument 
~ = q~5/~p'2. The dilatation invariance of (2.4) permits one to apply Noether's 
theorem and obtain the integral of motion 

q~,2 (q~ + 2rq~')Un - (q~ + r ~ ' ) U  = 0 (2.5) 

where the integration constant vanishes due to the correspondence with Max- 
well's theory. Integrating (2.5), one finds the following parametrization of 
the curve ~p = ~0(r): 

_ 8"rrq 2 
r(xl) - ~ (U - "qUa), U - "qU~ --> 0 (2.6) 

~(~q) = -q 1 
8"rrq 2 U - 2TIU n ' U - 2"qU,~ > 0 

where q stands for the electrical charge of the particle. 
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Let us investigate the behavior of solutions (2.6) in the neighborhood 
of the center of the system. Regularity requirements (at r = re = 0, q~ = q0c 
< oo, q~' = 0) impose the following restrictions on the function U: 

lim "q < oo, 
~--,= U - 2"qU~ 

which are met if and only if at large "q 

U ~-gaq + O(1), 

U - -qU~ 
lim - 0 
rl "--~~ 

g < 0 (2.7) 

where the negative sign of the constant g is chosen due to the positivity of 
U - 2"qU w Notice that the derivative 

qO' = - ' q [ 8 ' r r q 2 ( U -  2xlU~q)] -3/2 

in view of (2.7) automatically vanishes at the center. It should be noted that 
the Mie model corresponds to the choice U = l/(8'rr) + g'q. 

Now let us estimate the energy of  the field configuration found: 

f o E = T o d V  = 47r (~p'2U + 4~6U,1)r 2 dr  

where the symmetrical energy-momentum tensor was utilized. Using the 
integral identity 

fo o io o qxp'(U - " ~ - - = "qUn)r'l o q~'2(U xlUn)r 2 dr 3 tp6U~r 2 dr  

which can be obtained if both sides of (2.4) are multiplied by tp and integrated 
over the space, one gets 

E = 8~  q~6Unr2 dr  = 8"rr - - ~ -  ~p'Z(U - ~lUn)r 2 dr (2.8) 

As follows from (2.6) and (2.8), the field energy proves to be negative. Thus 
we conclude that in flat space-time a regular scale-invariant electrodynamics 
of the Mie type can be constructed only for particles with negative mass. 

3. MODEL OF SCALE-INVARIANT ELECTRODYNAMICS IN 
GENERAL RELATIVITY 

In this section, with the aim to describe field configurations with positive 
energy, we take into account the interaction between electromagnetic and 
gravitational fields. We formulate now the regularity criteria for the self- 
consistent configurations of electromagnetic and gravitational fields with 
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regular center. Regularity means that in the neighborhood of  the center the 
following conditions are satisfied (Bronnikov et al., 1979): 

(1) All metric components and electromagnetic potentials are regular. 
(2) The space is Euclidean. 
(3) Electromagnetic and gravitational forces vanish at the center. 

We also require that asymptotically, at large distances from the center, the 
Maxwell-Einstein equations are valid. 

Let us first study a generalization of the so-called Born- lnfeld  gauge- 
invariant electrodynamics (Born, 1934) described by a Lagrangian density 
of the form 

~s = __R + X(IM) 
2K 

where R is the Riemannian scalar curvature, K is the Einstein gravitational 
constant, and X is an arbitrary function such that in the limit of  weak fields 
x ~/M/(8"rr). 

Restricting ourselves to static, spherically symmetrical fields, we can 
write the squared interval as 

d s  2 = e2~(r)  d t  2 - e2a(r) d r  2 - -  r 2 d~'~2 

where d~~ 2 = dO 2 + sin20 dtp 2 and the functions ot and "y satisfy the following 
Einstein equations: 

e-2 ( l_ 
\ r  2 

e - 2 a ( l  
~,r z 

2or' / l = _ K T 8  (3.1) 
F 2 t ' , ]  

_•) 1 --KTI (3.2) 
+ r2 ----- 

e-2~(~/,,. + \  .y,2 +l_r (~/' - or') - ~/'ot'// = - KT~ = --KT33 

Here T O = T[ = 2XtM -- X, T 2 = T~ = - X  are the components of  the 
electromagnetic energy-momentum tensor, with Xtu denoting dX/dlM. 

The scalar potential q~ obeys Maxwell 's equation (e-~'-~r2q~'XtM) ' = 0, 
with the evident solution 

1 q (3.3) 
X/M~' = 8~r r 2 

Here we have taken into account the relation a + ~/ = 0 which follows 
from equation (3.2) minus equation (3.1). One concludes from (3.3) that the 
integration constant q is the electrical charge of the particle. 
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As is clear from (3.3), the electrostatic force vanishes at the center r = 
0 (q0' = 0) if and only if Xt M becomes infinite at least as r-3. But the latter 
behavior is impossible due to the fact that in the limit of weak fields (tp '2 
---> 0), XtM ---> l/(8'rr), as was previously assumed. Therefore, we come to the 
conclusion that gauge-invariant electrodynamics in general relativity does 
not admit regular static, spherically symmetrical configurations. 

Thus, to find a model of regular electrodynamics, we come to the 
necessity of breaking the gauge invariance by including terms in the Lagran- 
gian with explicit dependence on electromagnetic potentials. 

Consider the Lagrangian for the electromagnetic and gravitational fields 
as a functional of four independent invariants (Chugunov et  al., 1994): 

L = ( ,~(R, IM, R ~ A ~ A  f~, l ) ~ - - g  d3x 
J~ v) 

The SO(3) invariance of this Lagrangian permits one to apply the Palais 
symmetric criticality principle (Palais, 1979) and to take the 4-potential and 
the squared interval in the form 

a ,  = A(~)~ ~ 

ds  z = e 2v~) dt  2 - e 2 ~ )  d~= - e 2f~) d ~  2 

where ~ = ~(r) is the auxiliary coordinate corresponding to ~ = I / r  in the 
flat space-time E4 due to the following constraint: 

3~ = a + 213. (3.4) 

Using the fact that the symmetry properties of field equations facilitate 
the search for their solutions, let L show invariance under the following 
scale transformations: 

e 2~(~) --~ k le  2v(~), e 2'~) --) k2e 2a(~), e 2f~(g) ---) k3e 2f~) (3.5) 

--'> a t ,  A(~)  ---) bA(~)  

with ki, a, and b being group parameters. It should be noted that these 
parameters are not all independent. Indeed, for the scalar curvature R = 
2(R~ + 2Ro~ z + 2RI~ + z3 Rz3) to be pulled to RIk3 by the transformations (3.5), 
it is necessary to put k3 = a2k2 in view of the fact that 

R~ ---) R~ R]~ --) Rl~/(kzaZ), i = 1,2 

Rz93 = e-2~ _ 13,2e-2~ ~ e-2f~/k3 _ 13'2e-2~/(aZk2 ) 

Furthermore, the correspondence with the Maxwell-Einstein theory, that is, 
the behavior .~ ---) R/(2K) + IM/(8TO in the limit I ---) 0, implies two other 
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relations: klk3 = 1, kl = b 2. Lastly, from (3.4) we get k 3 = k 2. Therefore the 
invariance of the Lagrangian L implies a functional equation of the form 

~ ( k t R ,  ktlM, kIR,r f~, 1') = k t ~ ( R ,  IM, R~,~A'~A f~, 1") 

whence the structure of the Lagrangian density ~ immediately follows: 

R 1 
= - Y ( 1 )  2K 2 W(1)F'~alZ~f~ + 2X(1)R~,aA"A~ (3.6) 

where Y, W, and X are arbitrary functions of the invariant I such that in the 
limit 1 ----> 0, Y --> 1, W ---> 1/(8'rr), and IX  ---> O. 

Using (3.6), one gets the total Lagrangian in the form 

L = _ 1  e-~+~+2~[(313 '2 - 213'~' + 213" - e2~-2~)Y(/) 
K 

+ (.,/,2 + ,/,, _ e~'-y' + 2"/'13')F(/)1 d~ + a'2e-"-~§ d~ (3.7) 

with the notation F = Y - 2 M X .  One easily obtains from (3.7) the following 
Euler-Lagrange equations: 

( Y -  21YI)(213" - 13 ,2 - 2~/'13' - e ~+~) 

+ F" - ~/'F' - 2IFr = -~A'2e-2"~(W + 2/WI) (3.8) 

y(13,, + ~/,,_ 13,2 _ 213'~') - ~/'F' 

- Y'(13' - ~l') + Y" = v ,A'2e-2~W (3.9) 

y(13,z + 2~/'[3') - Ye ~+~ + ~l'F' + 2fS 'Y'  = - v , A ' Z e - Z ~ w  (3.10) 

ae-2~[~l"F t + (213" - 13,2 _ 2,/'13' - e2~+2f~)Yt] 

= I < [ A A ' 2 W I e  - 4 v  - (A'e-Z'~W) '] (3.11) 

where the derivative with respect to ~ is denoted by a prime. 
The scale invariance of the Lagrangian (3.7) leads to the first integral 

Q'  + ~I'Y - ~4A 'e -2"~W = N = const (3.12) 

where we put Q = Y - F/2.  It should be mentioned that the integral of 
motion (3.12) also could be obtained by integrating the sum of equations 
(3.8) and (3.9) and taking into account (3.1 l). 

Furthermore, one easily sees that the sum of equations (3.9) and (3.10) 
leads to 

Y(13" @ ~/") + Y'(~/' + 13') + I," : Ye 2v+213 (3.13) 
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whence 

or  

(Y' + Y(3" + 13')) 2 = Y2e2~Y+I3~ + k2 sign k, k = const (3.14) 

, y  y- t  d~, k = 0 

e-'~-f~ = k - ' Y  sin(k f~ Y - Ida) ,  k < 0  (3.15) 

k - t y  sh(k I~ Y-'  dl~ ), k > 0  

Then (3.9), in view of (3.13) and (3.14), can be rewritten as 

y,2 + y2~/,2 _ k 2 sign k + 2YQ'~' = ~4'2e-2"rWY (3.16) 

Denoting B(~) = Ae-'% one derives from (3.16) and (3.12) the following pair 
of differential equations: 

B(Y 'z - k 2 sign k) - YB'(Q' - N) 
Y~' = (3.17) 

YB' - B(N + Q') 

B ,  2 = YN 2 - k z sign k(Y - KWB 2) (3.18) 
KW(BZY~ - 2BYQB + i,,2) + y(Q2 _ ~ )  

Equation (3.18) can be integrated, as its right-hand side is a function of  B. 
The substitution of the solution B = B(~) into (3.17) permits one to find ~/ 
= ~/(~). The other unknown quantities a and [3 can be determined via (3.4) 
and (3.15). 

Thus we have shown that, given the functions Y, W, and X, the self- 
consistent system of gravitational and electromagnetic fields is governed by 
the integrable equations (3.8)-(3.11). 

We analyze now the regularity of the obtained solutions in the neighbor- 
hood of the center. In the case of static, spherically symmetrical field configu- 
rations the regularity criteria (I)-(3)  are reformulated as follows. At some 
= ~c such that e 13~ = 0: 

(1') e "v < ~, e '~ < ~, IAle -'Y < ~. 
(2') el3-'~113'1 = 1. 
(3') A' e -~'-'v = O, "y' e -'~+'y = O. 

With the aim to illustrate that the field equations (3.8)-(3.11) possess 
regular solutions, choose F -- I, which leads to the following relations: 
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(Y~l' + y,)2 = KWYA,2e-2~ + k 2 sign k 

Y~I' + Y' = KWAA'e -2~  + N 

(3.19) 

(3.20) 

Putting k = 0 to meet the requirements (1 ' ) - (3 ' ) ,  we obtain 

N 2 y  
B '2 = (3.21) 

v : W ( Y -  BYs )  2 

N Y B '  - Y ' ( Y B '  - Y 'B)  
Y~I' = YB'  - Y ' B  - N B  (3.22) 

Let us now choose for simplicity the functions Y and W as follows: 

Y = g(B/Bc) + , /1  - ( B / B J  

Y 
87rW - 1 - (B/Bc) 2 '  g > 0, Be = const 

Substituting W and Y into (3.21), one derives 

B = Bc th(nO, n = q/Bc > 0 (3.23) 

where g is the electrical charge defined by the boundary condition B'(0) = q. 
In view of (3.23), equation (3.22) can be easily integrated: 

ch(nO = n  e<l+c,g~. ~ _ oc ch(n~) 1 
d :-- ' N 

The function 13( 0 can be found after integrating equation (3.15) under 
the condition that k = 0: 

e_.t_13 _ I + g sh(n~) ln[l + g sh(n~)] 
ng ch(n~) 

Considering.(3.19) and (3.20) at ~ = 0, one finds the following relations 
between the model parameters and integration constants: 

N 2 = G q  2, - G i n  + gn = N (3.24) 

where m = -~I ' (O)IG is the Schwarzschild mass determining the total field 
energy and G = 8'rrK is the Newtonian gravitational constant. Notice that by 
specifying the constants in (3.24), one can obtain a positive mass spectrum. 

Thus we conclude that a nonlinear scale-invariant model of asymptoti- 
cally flat electrodynamics admitting particlelike regular configurations with 
positive energy can be constructed if both the gauge invariance is broken 
inside the particle and its proper gravitational field is taken into account. 
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